Apple may have canceled its Apple Car project, but the company continues to be granted patents for vehicles. The latest (number US 20240317132 A1) is for “Automatic Light Alignment.”
About the patent filing
The patent filing involves car headlights that can be steered during operation to accommodate road curvature. Sensor circuitry in the vehicle may be used to measure the shape and location of surfaces in front of the vehicle. The sensor circuitry can also be used to measure how the headlights illuminate the surfaces as light from the headlights is projected onto the surfaces.
For example, the sensor circuitry may measure where the headlights are aimed on the surfaces and can measure the pattern of light from the headlights on the surface as the headlight illumination is projected onto the surface. Light intensity measurements from an image sensor or other sensor may be used to obtain a peak headlight intensity position, may be used to locate edges in an illumination pattern, and may be used to determine other illumination characteristics.
Information on the three-dimensional shape of a surface in front of the vehicle can be used to predict where the headlights should be aimed and therefore the pattern of illumination from the headlights on the surface when the headlights are aligned relative to the vehicle. By comparing a prediction of headlight illumination intensity on the surface to measured headlight illumination intensity on the surface, the vehicle can determine how to move the headlight with the positioner to align the headlight.
Summary of the patent filing
Here’s Apple’s abstract of the patent filing: “A system may have lights. The lights may be moved using a positioner. Control circuitry may use sensor circuitry to monitor the environment surrounding the system. The sensor circuitry may include one or more sensors to measure the shape of a surface in front of the system and the location of the surface relative to the system. The sensor circuitry may also measure light illumination on the surface.
“Based on the known shape of the surface in front of the system and the distance of the surface from the system, the control circuitry can predict where a light should be aimed on the surface. By comparing predictions of light illumination on the surface to measurements of light illumination on the surface, the system can determine how to move the light with the positioner to align the light.”